Contact-free monitoring of circulation and perfusion dynamics based on the analysis of thermal imagery
Carina Barbosa Pereira, 1 , * Michael Czaplik, 2 Nikolai Blanik, 1 Rolf Rossaint, 2 Vladimir Blazek, 1 and Steffen Leonhardt 1
Abstract
Acute
circulatory disorders are commonly associated with systemic inflammatory
response (SIRS) and sepsis. During sepsis, microcirculatory perfusion is
compromised leading to tissue hypoperfusion and potentially to multiple organ
dysfunction. In the present study, acute lung injury (ALI), one of the major
causes leading to SIRS and sepsis, was experimentally induced in six female
pigs. To investigate the progress of body temperature distribution,
measurements with a long-wave infrared camera were carried out. Temperature
centralization was evidenced during ALI owing to impairments of peripheral
perfusion. In addition, statistical analysis demonstrated strong correlations
between (a) standard deviation of the skin temperature distribution (SD) and
shock index (SI) (p<0.0005), (b) SD and mean arterial pressure (MAP)
(p<0.0005), (c) ΔT/Δx and SI (p<0.0005), as well as between (d) ΔT/Δx and
MAP (p<0.0005). For clarification purposes, ΔT/Δx is a parameter implemented
to quantify the spatial temperature gradient. This pioneering study created
promising results. It demonstrated the capacity of infrared thermography as
well as of the indexes, SD and ΔT/Δx, to detect impairments in both circulation
and tissue perfusion.
OCIS codes: (040.3060) Infrared, (170.1610)
Clinical applications, (170.2655) Functional monitoring and imaging
1. Introduction
Acute
circulatory disorders belong to the major causes of death. In critical care
medicine, this complication often takes its course starting with systemic
inflammatory response syndrome (SIRS) or sepsis.
Sepsis is a severe
disease characterized by the presence of both infection and SIRS.
It might develop into severe sepsis or septic shock. While
the former corresponds to an aggravated sepsis by acute organ dysfunction, the
latter corresponds to a severe sepsis plus hypotension, which is not reversed
with fluid resuscitation [1–3]. Although there are several
diseases leading to SIRS and sepsis, acute lung injury (ALI) and pulmonary
infection are still considered the major causes of them [4]. Besides, several
pathophysiological similarities and links have been stated by diverse studies [5].Severe sepsis and septic shock are the main factors of morbidity and mortality in both, intensive care units (ICUs) [6–8], and neonatal intensive care units (NICUs) [9]. According to the literature, this pathology presents a wide range of incidence and, consecutively, a great impact concerning healthcare resources and expenditure [10,11]. In the United States, 751,000 cases of severe sepsis are considered to occur annually with a mortality that reaches 28.6% [11–13]. This astonishing number corresponds to a national estimation of the year 1995 presented by Angus and co-authors (2001) [13]. Moreover, a study carried out by Lawn and associates [14] indicated severe infections (including sepsis/pneumonia, tetanus, and diarrhea) as the second major cause of death in neonates (0-27 days). According to this publication, of 3.072 million deaths in 2010, approximately 27% were attributed to these complications, i.e. to severe infections [14,15].
Cavazzoni et al. [16] affirm that during sepsis, cardiovascular changes arise. This phenomenon may lead to tissue hypoperfusion, a determining factor in the development of multiple organ dysfunction [16–18]. Thus, to improve the outcome of the patients through appropriate clinical interventions (e.g. antibiotic therapy and organ support) an early diagnosis must be performed [1,19,20]. In an outstanding publication, Kumar et al. [21] evidenced an increase of 7.6% in mortality rate for every hour by which antimicrobials were tardily administered. However, early identification and application of appropriate therapy is a constant challenge for clinicians, since signs and symptoms of sepsis are nonspecific [21].
In 1980 Love [22] claimed that thermal emission of a living body is associated with its so called metabolic heat, which is, in turn, proportional to regional perfusion. Therefore, body temperature is a vital physiological parameter which supports defining health and disease, so that, knowledge of the skin’s temperature progress and its distribution might be highly important in case of illness. This parameter can give information about the degree and severity of an attack as well as indicate the progress of a disease (e.g., relapses and ameliorations) and therapeutic efficiency [23,24].
Body temperature is extremely dependent on the heat-exchange processes between skin, inner tissues, and vasculature, as well as on air-tissue interface, metabolic activity and sympathetic and parasympathetic activity. For this reason, its distribution may provide evidence of the centralization’s progress, which means restriction of blood flow to vital organs (e.g., the brain, heart, lung, kidneys, spleen, and liver) at the expense of peripheral organs (e.g. skin and gut) [25,26].
Medical infrared thermography is a remote, non-invasive and non-contact monitoring technique that permits to investigate the physiological functions associated with skin temperature control. Since skin temperature distribution depends on diverse physiologic processes (previously referred), infrared thermography (IRT) has become a promising imaging technology for medical applications [27–33]. Moreover, it is important to emphasize that IRT is a passive method, i.e. just records the radiation naturally emitted from the skin, and does not utilize any harmful radiation [27].
The current
study investigates whether IRT is capable (a) of detecting acute impairments of
body circulation and perfusion as well as (b) of monitoring the progress of
temperature centralization in a porcine animal model of ALI. Therefore, the
main goal of this paper is to analyze the capability of two indexes (standard
deviation and ΔT/Δx, a spatial temperature gradient) to quantify peripheral
temperature gradients and, consecutively, peripheral perfusion.
2. Material and methods
2.1 Animal trial – experimental protocol
The current
study corresponds to an amendment of the experimental protocol that was
approved by the governmental institution “Landesamt für Natur, Umwelt und
Verbraucherschutz NRW” (Germany; 84-02.04.2012.A173). It was performed
according to the declaration of Helsinki and the guiding principles in the care
and use of animals.
For these supplementary
measurements, six of the study pigs, weighing 31.7-39.9 kg (approximately 12-14
weeks old) were randomly selected and numbered from 1 to 6. A veterinarian
confirmed the absence of pre-existing diseases at the beginning of the study.The animals were anesthetized, intubated and placed in supine position, as depicted in Fig. 1 . To maintain the anesthesia, infusions of thiopental (7-12 mg kg−1 h−1) and fentanyl (6-10 µg kg−1 h−1) were continuously administered. Besides that, a 5 ml kg−1 h−1 Ringer solution for fluid replacement was continuously administrated and adapted to current needs of the animals. For volume balancing, a transurethral bladder catheter was inserted.
Photography
of the experimental setup (1: anesthetized animal; 2: infrared camera; 3:
laptop; 4: patient monitoring system (Philips IntelliVue MP 70, Philips Medical
Systems, Eindhoven, Netherlands); 5: Ventilator (Siemens 300A Servo Ventilator,
Siemens ...
Approximately one hour
after initiation of anesthesia and baseline measurements, experimental ALI was
induced. This was performed by repeated surfactant washout [34]. Circa two hours after this
step was completed, dependent on the number of repetitions needed to induce
ALI, the first measurement under ALI, named ALI 1, took place. Controlled
mechanical ventilation was set by using a variable PEEP, which was adjusted
according physiological responses, and an inspiration:expiration ratio of 1:1.
Subsequently, regular acquisition of vital data, blood gas analysis and further
measurements were performed as well as infrared data recording.
At the end of
the protocol, i.e. twenty-four hours after the measurement point ALI 1, the
animals were euthanized by applying a deep analog sedation (Fig. 2 ).
Chronogram
representing all the measurement time points (B: Baseline; PL: Post-lavage;
ALI: acute lung injury).
2.2 Infrared data acquisition and experimental setup
Infrared (IR)
thermograms were collected in this animal trial by using a long wave infrared
(LWIR) camera, VarioCAM® hr head (InfraTec GmbH, Dresden, Germany),
pre-calibrated, with a thermal sensitivity of 0.03 °C at 30 °C (Fig. 3 ). It detects IR wavelengths in
the spectral range of 7.5-14 µm and presents a spatial resolution of 384 x 288
pixels. Additionally, the current device allows a capturing rate of 50 frames
per second (fps) via FireWire (IEEE1394).
Schematic
of the experimental setup used in the animal trial.
For image acquisition,
the camera was sat atop a tripod and connected to a standard laptop computer
via FireWire (IEEE1394) (Fig. 3). Subsequently, the tripod was
placed approximately 1.5-2 m away from the examination table and its angle
regulated (approximately 40°) (Fig. 1). Body parts such as head,
superior limbs and trunk were predefined as a whole region of interest (ROI).
Thus, the camera was positioned so that they could be embraced in the thermograms.
In addition to that, the position of the tripod and the angle of the camera
were maintained constant, to avoid differences between thermograms.
In order to
evaluate the evolution of skin temperature distribution, measurements with this
IR camera were performed. They were carried out (1) at the beginning of the
animal trial (baseline measurement - B), (2) after ALI was induced (post-lavage
- PL), (3) at measuring point ALI 1, and subsequently, (4) at two-hourly
intervals (ALI 3 to 25) (Fig. 2). For subsequent analysis of
skin temperature distribution only one representative frame for each
measurement time point was used.
2.3 Vital data acquisition
In addition to temperature
monitoring, assessment of vital parameters such as heart rate (HR), blood
pressure (systolic, mean and diastolic blood pressure), and saturation of
peripheral oxygen (SpO2) was performed. For this purpose,
a patient monitoring system (Philips IntelliVue MP 70, Philips Medical Systems,
Eindhoven, Netherlands) was used (Fig. 1). Furthermore, blood samples
were collected and arterial blood gas analysis (BGA) (ABL 510, Radiometer,
Copenhagen, Denmark) carried out to determine the amount of oxygen and carbon
dioxide dissolved in arterial blood (PaO2 and PaCO2)
as well as the current pH.
2.4 Thermal images processing
Besides the anesthetized animals, appearance of other objects (e.g. monitoring devices, operating table, and blankets) in the thermograms was in some cases unavoidable. Therefore, image segmentation was necessary. For this reason, the method developed by Nobuyuki Otsu [35] called a clustering-based method, which permits to adaptively determine an optimal intensity threshold (in this case an optimal temperature threshold), was adopted [31]. It considers that an image is composed of two classes of pixels - foreground and background. Hence, using discriminant analysis, the algorithm estimates an optimal threshold value (T*) separating those classes by minimizing the within-class variance - σ2wcv, or equivalently, by maximizing the between-class variance - σ2bcv:
T∗=argmax0≤T≤L{σ2bcv(T)}.
(1)
The between-class
variance is given by
σ2bcv(T)=σ2(T)−σ2wcv(T),
(2)
where σ2 represents the total variance and T a threshold value. The within-class
variance corresponds, on the other hand, to the weighted sum of the
variances of each cluster [σ2B: variance of the pixels in the background; σ2F: variance of the pixels in the
foreground] as defined by:
σ2wcv(T)=ωB(T)σ2B(T)+ωF(T)σ2F(T),
(3)
where the probabilities
of the two classes - background and foreground - are
ωB(T)=∑T−1i=0p(i),
(4)
ωF(T)=∑L−1i=Tp(i).
(5)
It is valuable to note,
that in our notation the temperature ranges from 0 to L-1, where L represents a
distinct temperature. The probability of occurrence of temperature i is
formulated, in turn, as
p(i)=n(i)/N.
(6)
In this equation, n(i)
corresponds to the number of pixels with temperature i and N represents the
total number of pixels in a certain image.The between-class variance equation [Eq. (1)] previously introduced can be further computed as
σ2bcv(T)=ωB(T)[μB(T)−μ]2+ωF(T)[μF(T)−μ]2,
(7)
where the mean
temperature values of the entire image [Eq. (8)] as well as of both classes [Eq. (9) and Eq. (10)] are defined as:
μ(T)=∑L−1i=0ip(i),
(8)
μB(T)=∑T−1i=0ip(i)/ωB(T),
(9)
μF(T)=∑L−1i=Tip(i)/ωF(T).
(10)
In order to fill the
holes (defined as set of background pixels that does not contact with the
background) in the binary image, preprocessing was required. After
segmentation, several small regions, which did not correspond to foreground, but
to the background, were not efficiently extracted, since their temperature is
higher than the adaptively estimated threshold. Therefore, it was considered
that only the biggest region corresponds to the ROI. The preprocessing
algorithms previously described were implemented in MATLAB (MATLAB 2013a, The
MathWorks Inc., Natick, MA).2.5 Statistical analysis
In order to
evaluate the skin temperature distribution, the index ΔT/Δx, which can be
considered as measure of the spatial temperature profile/gradient, was
examined. It corresponds to the spatial change in temperature ΔT with distance
Δx between the body center and the most peripheral collateral point visible in
the thermogram. Therefore, just one hemisphere was considered. As the central
reference point, the hottest point next to the coolish sternal region was
chosen with the shortest distance to the peripheral point (paw) (Fig. 4 ). It should be noted that
similar approaches have already been integrated in image processing software.
The temperature gradient as well as the standard deviation (SD) of the skin
temperature distribution were correlated with mean arterial pressure (MAP),
shock index (SI), PaO2 and PaO2/FiO2
as indications for circulatory impairments and oxygenation, respectively. SI,
defined as the ratio of heart rate to systolic blood pressure, is a marker of
shock. According to some research groups, this parameter is an effective marker
for the initial assessment of sepsis [36,37] and
presents a great physiologic significance in acute circulatory failure [38]. The parameter PaO2/FiO2,
also denominated PF ratio, corresponds to the ratio of arterial oxygen
concentration to the fraction of inspired oxygen. In Critical Care medicine and
Anesthesiology, it permits to describe the severity of pulmonary dysfunction.
(a)
Thermogram with temperature profile. (b) Graphic representation of the
temperature profile (Dash-dot line - blue) as well as of the fitting curve
(solid line - gray). ΔT/Δx correspond to the slope of the fitting curve (ΔT/Δx ...
Statistical
analysis was performed in SPSS version 19.0 (SPSS Inc., IBM Business Analytics
Software, Armonk, New York, USA). To calculate correlation between variables,
Pearson’s method was applied. Moreover, normal distribution of data was
determined by carrying out the Kolmogorov-Smirnov test. Since normal
distribution was corroborated, one-way analysis of variance (ANOVA) was used
for the assessment of statistical differences between time points.
Additionally, histogram analysis was also effectuated. To describe shape
characteristics of a distribution, skewness and kurtosis were studied. A
p-value of <0.05 was considered as level of significance. Outliers are
marked in boxplots but not removed from statistical analysis.
3. Results
In the current
study, six young female pigs weighing 35.18 ± 3.63 kg (mean ± SD), were
studied. Owing to consequences of acute respiratory distress syndrome (ARDS)
(severe circulatory instability with the need of high amounts of catecholamines
and severe hypoxia), three animals died before the end of the animal trial but
all hitherto data were analyzed (one pig died at ALI 9 and the remaining two at
ALI 17). All results presented below are expressed as mean ± SD.
As previously referred,
image pre-processing was required to define the ROI (head, superior limbs and
trunk). In order to show the performance of the pre-processing algorithm as
well as to illustrate the development of the skin temperature distribution, six
thermograms were selected. They correspond to the same animal and represent six
different time points (baseline, ALI 1, ALI 7, ALI 13, ALI 19, and ALI 25). Figure 5 depicts the original
thermograms as well as the thermograms after pre-processing. In addition, the
same figure includes the histograms corresponding to the pre-processed thermal
images, which contain the ROI (head, superior limbs and trunk). Major
characteristics of the acquired thermograms are: occurrence of spotty markings
after ALI induction, varying mean temperature and distribution as well as
increasing temperature gradients from the periphery to the center. In order to
study the distribution shape of the histograms, both kurtosis and skewness were
investigated (Fig. 6 ).
Original
thermograms at six differing points of time [(a) Baseline, (d) ALI 1, (g) ALI
7, (j) ALI 13, (m) ALI 19, (p) ALI 25]. Thermograms representing ROIs after
pre-processing [(b) Baseline, (e) ALI 1, (h) ALI 7, (k) ALI 13, (n) ALI 19, (q)
ALI 25]. ...
Boxplots
describing the course of (a) Skewness and (b) Kurtosis over the measurement
points. The outliers are identified with the number of the corresponding animal
(“o” and “*” stand for mild (between 1.5 and 3x interquartile ...
Figure 7 represents, in turn, the
relationship between SI, MAP, SD and ΔT/Δx over the fifteen measurement time
points. This graphic illustration exhibits a similar tendency between SD and
ΔT/Δx. Although it is inversely proportional, MAP presents an analogous
behavior to the previous parameters (SD and ΔT/Δx). Regarding SI, it is
important to emphasize that there is no significant difference between groups,
i.e. between each measurement time point. Nevertheless, the course of SI is
similar to the one of SD and ΔT/Δx, which is particularly noticeable between
ALI 11 and ALI 19, so that corresponding correlations are strong (Fig. 7).
Boxplots
describing the course of (a) Shock index (SI), (b) mean arterial pressure
(MAP), (c) standard deviation (SD) and (d) ΔT/Δx over the fifteen measurement
points [B (baseline), PL (post-lavage), ALI 1, ALI 3, ALI 5, ALI 7, ALI 9, ...
With the purpose of
illustrating the progress of pulmonary dysfunction and oxygen levels in blood,
two further variables, PaO2 and PF ratio, were analyzed (Fig. 8 ).
Boxplots
describing the course of (a) PF ratio and (b) PaO2 over
the fifteen measurement points. Difference between groups are significant for PaO2
(p=0.006) and PF ratio (p=0.002). The outliers are identified with the number
of the corresponding animal ...
Regarding statistical
analysis, the one-way ANOVA indicated significant differences for four
parameters, SD [F(14,53) = 7.385, p<0.0005], ΔT/Δx [F(14,53) = 3.687,
p<0.0005], PaO2 [F(14,53) = 2.622, p = 0.006], PF
ratio [F(14,53) = 2.925, p = 0.002]. In contrast, there were no statistically
significant differences for MAP [F(14,53) = 1.560, p = 0.122] and SI [F(14,53)
= 1.031, p = 0.438].
A Pearson
product-moment correlation was used to determine the relationship between
variables, which were in each case normally distributed. Correlation
coefficients and levels of significance are described in Table 1 . Among others, this method
demonstrated strong significant correlations between the two proposed
parameters (SD and ΔT/Δx) and SI and MAP.
Pearson product moment correlations between SD, ΔT/Δx, SI and SI, MAP,
PaO2 and PF ratio
4. Discussion
The present
study aims to evaluate whether IRT is capable of remotely monitoring
disturbances in circulation and perfusion. For this purpose, six pigs with
experimentally induced ALI were analyzed. As referred, ALI is a very common
disease in critical care and is one of the leading causes of SIRS and sepsis.
Image processing of the
thermograms was imperative in order to remove the background. The performance
and quality of background extraction was assessed visually. Therefore,
according to our pre-established criteria, a satisfying background extraction
must accurately define the desired ROI, i.e. the upper body of the animals
(head, superior limbs and trunk). The adaptive threshold method developed by
Otsu [35] has demonstrated a good
performance as illustrated by the examples in Fig. 5. Despite of good performance,
some small regions were not properly extracted. This may be due to
contrast/temperature similarity between the object (anesthetized animal) and
the background. Figure 5 depicts a few examples marked
with white frames. As referred, after segmentation, several regions were
erroneously considered as foreground. Hence, it was assumed that just the
biggest region corresponds to the ROI. Due to this assumption the region
corresponding to the animal’s paw, marked with a blue frame in Fig. 5(q), was removed. Despite the
satisfying results achieved, in subsequent studies performance of several
segmentation algorithms should be examined due to their high dependency on the
clinical application.The same figure (Fig. 5) displays the development of the skin temperature distribution. Firstly, at the baseline, the body temperature is uniformly distributed. However, thereafter it tends to centralize (the temperature profile is composed by a wide range of temperatures, decreasing from the center to the periphery) due to peripheral hypoperfusion, which results from the further progress of the disease’s severity. The six histograms together with the SDs and ΔT/Δx (Fig. 7(c) and 7(d)) allow to sustain the previous affirmations.
Moreover, differences of shape of the probability distributions between baseline and ALI are evidenced. At baseline, the histograms tend to present both a higher negative asymmetry (left-skewed distribution - extreme scores are on the higher end of the histogram) and a higher kurtosis distribution (sharper and longer peak). A sharper and longer peak means that the distribution is more clustered around the mean, thus, it will have a relatively smaller SD. In other words, the percentage of pixels around the mean temperature is higher, which leads to a more homogeneously distributed body temperature. On the other hand, during ALI the histograms present smaller negative asymmetries (the histograms tend to become more symmetrical) as well as lower kurtosis distributions (Fig. 5 and Fig. 6). A lower peak means that the distribution is less clustered around the mean, which signifies higher standard deviations and, consecutively, a heterogeneously distributed body temperature (e.g. due to temperature centralization).
As previously highlighted, SI, which is a good measure of hemodynamic in-/stability, presents a high significance in acute circulatory failure. Due to its clinical relevancy, possible correlations between SI and SD as well as SI and ΔT/Δx were investigated. As alluded, SD and ΔT/Δx represent the skin temperature distribution and gradient, respectively. The Pearson product-moment correlation have demonstrated a strong correlation between SD and SI as well as between ΔT/Δx and SI. Furthermore, the same method evidenced a strong negative correlation between both parameters, SD, ΔT/Δx, and MAP. As widely known, sepsis and shock are characterized by an impaired blood flow to body tissues (hypoperfusion), which leads to temperature centralization [40], and commonly include hypotension [16]. Figure 7 demonstrates that the progress of the disease severity is accompanied by an increase in SD, ΔT/Δx and SI and a decrease in MAP.
In addition, this statistical method pointed out a moderate negative correlation between SD, ΔT/Δx, SI and both PaO2 and PF. Besides hypoperfusion, circulatory disorders contribute also for tissue hypoxia (insufficient levels of oxygen in blood or tissue; decreased PaO2), since there is an inability to meet the oxygen demands of the tissues. A decrease of the PF ratio is also expected owing to an increase of the severity of the pulmonary dysfunction (Fig. 8). In Fig. 8 an increase of PF ratio after ALI 17 is observed. This indicates an improvement on gas exchange mechanisms of the lung. As expected, it is accompanied with decreases in SI, SD and ΔT/Δx.
Unexpectedly, one of the animals (animal number 4) suffered from an arterial peripheral thrombosis at t = ALI 3. This phenomenon has led to a worsening of its clinical situation. Between ALI 3 and ALI 11 vital parameters such as HR, MAP, PaO2 and PF ratio deviated from the other animals. Even the measures of the new parameters, SD and ΔT/Δx, turned out to be outliers (Fig. 7).
According to the one-way ANOVA, there was statistically significant difference between measurement time points for SD, ΔT/Δx, PaO2 and PF ratio. Regarding SI and MAP, no significant differences were denoted. The previous factors support the hypothesis that SD and ΔT/Δx might be capable of better representing the course of the disease’s severity (Fig. 7).
In the present study, the parameters SD and ΔT/Δx were compared with the wide-known SI. Whereas SI, SI x age, systolic blood pressure and heart rate are relatively easy to assess and in particular determinable in our study, other measures need more invasive equipping such as central venous catheter, arterial catheter or even a pulmonary artery catheter. Hence, more sophisticated parameters like stroke volume variation, intrathoracic blood volume index or cardiac index are not available in our trial just as in most patients in intensive care. Besides, even invasively derived parameters such as mentioned before, do not carry a guarantee to adequately monitor course of severity of circulation disorders. The appropriateness is rather dependent on the root case for the circulatory disorder, e.g. hemorrhagic shock, cardiogenic shock, toxic shock or even sepsis.
Although the encouraging results, the study has a few limitations that need to be addressed. First, no control group was considered. Even though, a uniform temperature distribution with moderate variance would be expected throughout the animal trial since an adapted and balanced volume restitution was performed. Nevertheless, for further studies a control group should be considered. Second, no comparative method or technique was used to validate our results, since there is no gold standard available measuring similar properties. Third, it must be taken into account that there are large inter-individual varieties concerning the course of the disease. Since this a common problem in biomedical studies, the only way to overcome this challenge is to examine larger study populations. Fourth, regarding body surface temperature measurements, there are certainly differences between pigs and human patients (e.g. due to skin thickness and body fat). Unfortunately, no studies analyzing temperature distribution in pigs could be found in literature. Fifth, for IRT based circulation monitoring exposure of a large portion of the body is required. But, on the one hand, for diverse clinical applications such as examining regional perfusion it is not necessary to include the whole body but only some body parts. On the other hand, for other clinical applications requiring whole body examination, time limited uncovering of the patient (e.g. for 5 minutes) would also be practicable.
Another point
to be addressed is the geometric arrangement of the IR camera. Ideally, it
should be perpendicular to the body plane - ceiling-mounted. Since this project
was a pilot study and several medical needs must to be considered [(1) the
equipment must not prevent the anesthetist to perform its countless tasks
according to the study protocol; (2) the need for several medical devices and
equipment], a compromise had to be found for the location of this setup.
5. Conclusions
The current
study demonstrated the capability of infrared thermography for monitoring
circulation and perfusion in a porcine animal model. By developing adequate
indexes, the course and severity of disease could be quantified. As expected,
experimental ALI induced increases in both ΔT/Δx and SD, which is caused by
temperature centralization and a risen heterogeneity in body temperature
distribution In addition, significant correlations were shown between the
latter indexes and the clinically established shock index.
Based
on this pilot study, further trials should be carried out in order to prove
these results and to establish new clinical fields of application, such as
early detection and monitoring of sepsis and the efficacy of therapeutic
procedures. The aim should be to receive medical implications within a time
frame of several minutes to generate highest possible clinical benefits. In our
opinion this is a challenging but realistic goal requiring both, modified
technical and organizational concepts. After proving possible applications for
IRT, the next step should be integration of this technique into clinical
algorithms. After all, novel techniques for the assessment of regional
perfusion, micro- and macrocirculatory hemodynamics, such as infrared
thermography, might be promising alternatives to enhance and optimize
diagnostics and treatments in critical care medicine.